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ABSTRACT: 

 

 

Catheter-associated blood stream infections (CABSIs) are serious, yet common, outcomes in both 

human and animals with indwelling catheters. The increasing rate of these infections is partially due to 

hindered knowledge on how to stop the spred of these pathogens, this due, in part, to inadequate animal 

models. Current experimental models fail to mimic various aspects of sepsis pathogenesis, diverse 

clinical symptomology, and in most cases lack the ability to test novel therapies for use in human 

medicine. In response to the urgent need for a more clinically relevant animal model of CAS, this large 

animal model was conceptualized and validated through this prospective study. Eight clinically healthy 

domestic cross-bred mature female sheep were obtained and double-lumen peripherally inserted central 

catheters (PICCs) were nonsurgically placed in the left jugular veins. A novel inoculation method was 

developed using a luminal volume of Klebsiella pneumoniae subsp. pneumoniae 43816RifR isolate and 

blood mixture (1:3). The mixture was injected into the lumen and was allowed to clot where is remainded 

for the duration of the study, enabling the development of a chronic catheter infection with the slow 

prolonged release of bacteria. This continual shedding of bacteria more closely mimicks the natural 

pathogenesis of catheter-associated sepsis (CAS) in clinical settings. A diverse yet dose-dependent host 

immune response was observed including; tachypneas, tachycardias, pyrexias, leukopeneas, 

neutrophilias, thrombocytopenias, hyperlacemias, and in some sheep biochemical signs of organ 

injury/damage with SOFA scores reaching ≥5. All challenged sheep fulfilled clinical sepsis criteria, as 

well as acute sepsis-induced organ injury and sepsis-induced coagulopathies to varying degrees. At 

necropsy all challenged animals showed evidence of recent bacteremia, acute organ injury and positive 

cultures of the parent 43816RifR isolate from several tissues, organs and catheters. In contrast, none of 

the negative (control sheep) developed any signs of infection or positive bacterial cultures for the 
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43816RifR isolate. Validation of this novel in vivo animal model of catheter-associated sepsis 

demonstrates its potential to serve as a robust, reproducible and reliable platform for future biomedical 

sepsis research.  

 

Introduction: 

Despite the historical significance of sepsis in human medicine, it remains one of the least understood 

and most enigmatic disease processes to date. It is not only hard to properly diagnose and treat, but until 

recently was best defined only by its clinical presentation [1-3]. This is due, in part, to highly 

heterogeneous intrinsic factors including; genetics, age, race, sex and health/comorbidities [4-7]. In 

addition, there are several extrinsic factors including treatment type, infection type, microbe(s), degree 

of insult, and time of infection [8-10]. Due to this multifaceted and highly varied host immune response 

[11-13], an intricate understanding of the complex pathophysiology of sepsis has not been fully 

described. This gap in knowledge hinders our ability to develop better diagnostics, therapies, and 

prevention methods.  

Animal models are an essential component in biomedical and sepsis research,  enabling investigators 

to study the molecular and cellular pathology of sepsis in experimental designs not feasible in human 

patients. However, current animal models of sepsis are subject to critique regarding the clinical 

translation of experimental data to human clinical sepsis [4, 7, 14-23]. While they provide an extremely 

valuable resource for studying the pathophysiology of several types of sepsis [4, 9, 18, 19, 21-24],  

current animal models of sepsis are limited in their ability to provide clinically relevant data specific to  

catheter-associated septicemias (CAS). In fact, several recent publications have argued that the use of 

animal models, particularly murine models, have resulted in significant misinterpretation and failure of 

upwards of 150 human clinical trials [7, 15, 16, 24]. 
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Murine models often fail to properly reproduce clinical symptoms of human sepsis due to significant 

differences in the host-species tolerance for lipopolysaccharide (LPS), a key mediator of the 

inflammatory cascade associated with sepsis [25, 26]. In addition, most species used in current models 

are hindered by an inability to non-surgically place and maintain long-term intravenous catheters, 

repeatedly sample large volumes of blood, monitor clinical parameters (hemodynamic, 

cardiopulmonary, biochemical, etc.), or administer IV therapies or fluids to test current and novel 

treatments. There is a substantial need for the development of robust large animal models that more 

closely mirror the pathogenesis, immunology and pathophysiology of sepsis.  

Similar to human internist, large animal internal medicine specialists routinely deal with sepsis and 

bacteremia in hospitalized horses, sheep, goats and cattle. Like humans, the source of infection is often 

associated with long-term IV catheterization. The use of sheep as an animal model of sepsis has been 

suggested in several articles [17, 21, 27-33], and the similarities in body size, anatomy, immunology and 

pathophysiology make them an ideal species for studying human disease processes. Sheep can be easily 

acquired and housed, have a proven track record in human biomedical research, and are amenable to a 

full array of advanced medical diagnostics and monitoring [27, 31, 34]. They provide marked advantages 

over swine in that we can easily place and maintain peripherally inserted intravenous central catheters 

(PICC) and urinary catheters without surgery or sedation, can be administered continuous rate infusions 

of IV fluids or antibiotics, and they are much more easily handled for evaluation of blood pressure, 

echocardiography and closed-system urinary catheter collection . In addition, they have LPS sensitivities 

similar to humans, and have similar pharmacokinetics/pharmacodynamics to many antibiotics used in 

humans, such as carbapenems [26-28, 33]. There are currently several validated ovine models simulating 

the critical care situation in humans, and they arguably are much more clinically relevant to study 

specific disease processes than previous animal models. [29, 34] 
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Current literature states that up to 90% of patients admitted into hospitals will require some type 

of vascular access to deliver intravenous (IV) medication, blood products, and/or fluids [35-42]. Among 

these catheterized patients, an estimated 40% will require a centrally placed vascular access point 

commonly referred to as a central venous catheter (CVC) or more commonly in human medicine, a 

central-line (CL) [43, 44]. CVCs are a necessity for the proper care of critically or chronically ill 

individuals, as they are required for infusion of certain medications (due to toxicities, volume, etc.), 

nutritional support, fluid replacement, blood collection, renal replacement therapy, and hemodynamic 

monitoring [39, 43, 45-49]. However, despite their significant benefits to public health, and the millions 

of lives they save every year, there are substantial risks involved with their use.  

Catheter-associated blood stream infections (CABSIs) have various etiologies, but disease usually is 

initiated as a monomicrobial infection of the catheter lumen. These infections of the catheter lumen form 

a biofilm and seed a long-term systemic infection (sepsis). Many CABSIs and CAS are caused by 

members of the Enterobacteriaceae family, including Klebsiella pneumoniae subsp. pneumoniae [50, 

51].  

Our a priori hypothesis for this study was that the intraluminal seeding of Klebsiella pneumonia in 

central intravenous catheterized sheep would result in a dose-dependent host immune response that 

would fulfill the criteria of sepsis in humans (both Sepsis-2 and Sepsis-3 definitions) [1-3]. In addition, 

confirming the ease of placement and ability to maintain a double lumen peripherally inserted central 

catheters (PICC) in sheep without the use of general anesthesia of sedation. Successful proof-of-concept 

induction of sepsis in sheep using this novel induction method combined with the ability to collect 

frequent samples of large volumes of blood provides a much needed platform on which to further 

evaluate  novel therapies and study the pathobiology of sepsis. 
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Materials and Methods: 

Animal preparation and general experimental design/setup. Eight adult domestic crossbred 

clinically healthy female sheep were obtained and housed in the livestock infectious disease isolation 

facility at Iowa State University. The average body weight for the animals was approximately 70 kg at 

the start of study. The sheep were housed in individual pens, with control groups physically separated 

from the challenge groups. The sheep were allowed four days for acclimatization to their new 

environment prior to the initiation of the experimental procedures. All subjects were fed identical diets 

of free choice grass hay and a ruminant concentrate pellet twice daily and were given free access to clean 

water at all times. The eight ewes were randomly placed into three groups; Control Group (N=2), 

Challenge Group #1 (N=3) and Challenge Group #2 (N=3). During the course of the study, each of the 

challenge groups received two inoculations, with the second challenge occurring after the return to 

baseline cardiovascular and physiologic parameters following the first dose. On day 0 of the study, all 

ewes were administered their first inoculation (all subjects inoculated within 1 hour of each other).  

Challenge group #1 received (Dose #1 of 103 CFU) K. pneumonia 43816RifR isolate while challenge 

group #2 received (Dose #2 of 107 CFU) of the K. pneumonia 43816RifR isolate. The control group 

received sterile bacterial media (TSB) as a sham inoculation. In order to assure that physiological 

parameters returned to baseline prior to re-challenge, the second inoculation was administered at 

different time points for the challenge groups. On day 7 of study, challenge group #1 received (Dose #3 

of 108 CFU) K. pneumonia 43816RifR isolate, while challenge group #2 received (Dose #4 of 109 CFU) 

K. pneumonia 43816RifR isolate on day 12 of the study. Beginning two days prior (day -2) to the first 

inoculation and continuing through the study endpoint, physiologic assessments were performed, and 

samples collected for diagnostics as summarized in Appendix I. 



www.manaraa.com

7 
 

 
 

Animal Welfare Assessments. The Iowa State University Institutional Animal Care and Use 

Committee approved all of the experiment protocols in this study under protocol 3-15-7965-O. Based 

on the recommendations of a recent publication regarding the development and refinement of animal 

models of sepsis [52, 53] we elected to limit the treatment group sizes in lieu of trying to achieve 

statistical significance. As argued by that publication, this study was designed as a descriptive proof-of-

concept effort [53].  In addition, in order to assure humane endpoints for animal euthanasia we developed 

and the IACUC approved a monitoring algorithm (Appendix I). This algorithm included a four-level 

score for each of the following parameters: activity, head position, breathing pattern, rectal temperature, 

hydration status, heart rate, eating and ability to stand. Scores for each parameter were recorded twice 

daily beginning two days prior to the first inoculation through the duration of the study, with more 

frequent evaluations immediately following the highest dose challenge of 109 CFU (every 15 minutes 

for two hours, then every hour for five hours). Sheep receiving a severity score of four in six or more of 

the assessed parameters would be euthanized immediately.  

Preparation of bacteria. Klebsiella pneumoniae subsp. pneumoniae (Schroeter) Trevisan (ATCC® 

43816™) serotype 2, was the inoculum strain used throughout this study. In order to allow for easier 

monitoring, the parental ATCC 43816™ strain was sub cultured (109 CFU) onto a Trypticase soy agar 

(TSA) plate containing 100 ug/ml rifampin. An ATCC 43816 Rifampin resistant (43816RifR) isolate 

was selected and isolated, then stored for use throughout study (MIC to rifampin > 256 ug/ml).  

Central intravenous (PICC) catheter placements. Intravenous catheters identical in material and 

placement to catheters used in long-term IV catheterization in humans were selected. These double-

lumen (2x18 gauge) wire guided long-term Mila silicone peripherally PICC inserted central catheters 

(Mila order #3565) were placed in the left jugular vein of each ewe. Prior to insertion of the catheters, 

the animals were restrained , the fiber was removed using hair clippers and the neck was prepped 
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aseptically (Povidone/Iodine) along the jugular vein. Maximal sterile barrier precautions were used as 

described in [47] to avoid contamination of the catheters. Catheter placement did not require general 

anesthesia or sedation, however 1.5ml of 2% lidocaine solution was injected subcutaneously at the site 

of catheter placement to provide local anesthesia. The appropriate catheter length was estimated by 

measuring the distance from the site of insertion to the approximate site of the distal vena cava or right 

atrium (as is typical for central catheters in humans) and aseptically cut to length according to 

manufacturer. Catheters were secured using 2-0 suture and needleless injection ports (Mila order #8095) 

were placed on each line. Once catheters were placed and secured, both ports were flushed with 10ml 

heparinized saline solution and tested for patency. Thereafter, 10ml heparinized saline solution was 

administered after each sample collection and twice daily to ports that were not sacrificed for inoculation. 

Sample collection and cultures. Approximately 20ml blood samples were obtained daily from the 

second catheter lumen following standard aseptic preparation. Samples were aliquoted as necessary for 

the testing required at the given sample period. Initially blood culture methodology utilized a low volume 

of blood (1 mL) directly applied to the culture media as a spread plate. However, following inoculation 

#1, absence of growth in cultures of the isolates was observed in all blood or fecal samples collected. As 

a result, on day 7 (Dose #3) of the experiment, the decision was made to increase the volume to 5 mls of 

blood and adding enrichment to cultures to facilitate the growth of the 43816RifR isolate in-vitro. The 

enrichment of blood samples was performed by adding 5 ml of blood samples into 50 ml TSB broth 

containing 100 ug/ml rifampin. These enriched samples were incubated at 37 ºC overnight and 250 ul of 

culture was spread out uniformly on TSA + Rifampin plates. Broth and agar plates for cultivation of K. 

pneumoniae 43816RifR isolate included tryptic soy agar + 100 ug/ml vancomycin + 100 ug/ml rifampin 

to quantitatively culture the blood and fecal samples. Fecal samples were obtained from rectum using 

clean gloves for each animal and placed in airtight sealed bags for culture.  Culture of feces was 
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performed as described above. Select tissue and catheter samples were cultured following necropsy. For 

samples not receiving the enrichment step, CFU counts were obtained by physical counts of colonies on 

selective media. When enrichment was performed, samples were recorded as positive or negative 

without quantification. 

Cardiovascular, hematological and coagulation profile monitoring. Heart and respiratory rates were 

obtained by auscultation and visual observation of thoracic cavity for movement from inhalation. Two 

methods were used for temperature monitoring. First, rectal temperatures were obtained by inserting a 

digital thermometer approximately 3 inches into rectum and pressing tip gently against rectal wall. 

Secondly, rumen temperature data loggers (iButton) were administered via oral bolus for continuous 

temperature monitoring and were recovered at necropsy. Blood samples were collected from the second 

catheter lumen in the jugular vein and placed into vacutainers containing EDTA and sodium citrate as 

anticoagulants or into serum tubes (free of anticoagulant) for biochemical analysis. Hematological and 

serum samples were placed at 4ºC and analyzed by an accredited veterinary clinical pathology laboratory 

(Iowa State University College of Veterinary Medicine) within 4 hours of collection. Complete blood 

counts (CBCs) were monitored daily for the first week of the study and during intensive monitoring of 

high dose challenge (dose #4), then every other day thereafter. Serum chemistry was analyzed every 

other day throughout the study and banked for future analysis. Complete coagulation profiles including 

D-Dimers, prothrombin (PT) and partial thromboplastin (PTT) times were performed intermittently 

during the study when evidence of sepsis induced coagulopathies (such as; signs of petechia, 

dehydration, and/or mottling of the skin).  

Inoculation #1. Dose 1 (~1x103 CFU into three ewes in challenge group #2) and Dose 2 of (~1x107 

CFU into three ewes in challenge group #1) were administered by “sacrificing” a single lumen of each 

PICC catheter. Prior to placement, the catheter residual volume was determined to be just over 400 ul. 
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In all ewes, the K. pneumoniae 43816RifR isolate (resuspended in 100 ul of broth) was mixed with 300ul 

of fresh blood collected from the animal by inversion of the syringe. The 400ul of mixed blood/inoculum 

was then injected back in the lumen allowing it to fill the lumen without injecting into the bloodstream. 

The blood was then allowed to clot, resulting in the occlusion of a single catheter lumen contaminated 

with a monoculture of K. pneumoniae 43816RifR isolate. By utilizing a single lumen of the catheter to 

serve as a reservoir for microbial growth it enabled the prolonged shedding of a monoculture of bacteria 

from the contaminated catheter, which is a key element to the overall pathogenesis and pathobiology 

seen in many types of catheter associated sepsis. Since no previous sheep models have used a similar 

method of inoculation of this pathogen, the doses were empirically selected. After inoculation, the lumen 

port that received the inoculations was closed and sealed with red tape labeled “inoculation port” and 

remained undisturbed throughout the remainder of the study.  

Inoculation #2. Dose 3 (~108 CFU to the three ewes previously given Dose #1 in Challenge Group 

#1) and Dose 4 (~109 CFU to the three ewes previously given Dose #2 in Challenge Group #2) were 

subsequently administered due to neither of the first two inoculation doses resulting in sufficient changes 

in clinical signs indicative of severe sepsis.  This approach minimized animal usage (consistent with 3R 

approach to developing animal models) while maximizing our data collection on dose responses. These 

second dose inoculations of the K. pneumoniae 43816RifR isolate were given to both challenge groups 

using the same technique as Dose 1, with the exception of using the second lumen of the double lumen 

catheter. Challenge group #1 was inoculated a second time on day 7 and challenge group #2 was 

inoculated a second time on day 12.  

Euthanasia. No sheep were euthanized due to meeting the criteria outlined in our endpoint’s 

algorithm (Appendix I). Upon termination of the study, each ewe was humanely euthanized by injecting 
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10 mls pentobarbital sodium (Fatal Plus© 390 mg/ml) into the jugular vein.  The control group and 

challenge group 1 were euthanized on day 14, while challenge group 2 was euthanized on day 15.  

Necropsy. A board-certified veterinary pathologist performed a gross necropsy immediately after 

death was confirmed for each ewe. Tissue samples collected from various organs were swabbed with a 

sterile, dry swab and/or placed in a sterile tube for microbiological evaluation or 10% neutral buffered 

formalin solution for histological analyses. Swabs were taken aseptically from lungs, liver, catheter, 

spleen, heart valves, feces, duodenal contents, and arterial blood. These swabs were cultured on selective 

media for K. pneumoniae 43816RifR isolate growth as described above. Tissue samples were collected 

from lung, liver, spleen, and heart valves for histopathology. The hearts were checked grossly for any 

evidence of endocarditis. Lastly, the (iButton) rumen temperature data loggers were retrieved from the 

rumen or reticulum of the subjects.  

 
Results 

Dose-Dependent Host Immune Response. The sheep demonstrated a dose dependent host response 

that displayed consistency with the pathophysiology of sepsis and satisfies the clinical criteria used to 

define human sepsis, including what was previously considered severe sepsis and septic shock (tables 1-

2 and figs. 1-3). Additionally, the severity of sepsis was approximated using human (SIRS and SOFA) 

criteria and the model successfully induced disease states meeting various levels of these criteria in sheep 

at specific time intervals of the study (tables 1-2 and figs. 1-3). Clinical signs consistently observed in 

individual animals following inoculation #1 (Dose #1 & Dose #2) included tachycardia, pyrexia, 

tachypnea, neutrophilia, leukocytosis, thrombocytopenia, increased total bilirubin and hyperlactemia. A 

dose-dependent response was observed, with higher doses having a more profound physiologic response 

in the measured parameters. While the general trends in physiologic response were fairly consistent 

across all animals for a given dose, there was obvious individual animal variation in the degree of 
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response. For example, a much more robust immune response was seen in all subjects within challenge 

group #2 following Dose #4. In addition to the clinical signs mentioned at the lower doses, these animals 

demonstrated changes in hematological markers including leukocytosis, lymphocytosis, neutrophilias, 

neutrophil bands, thrombocytopenia, increased PT, PTT and D-Dimers.  The last four findings are 

consistent with dessiminated intravascular coagulation. Variable changes in biochemical indexes were 

also seen in these animals with increased serum BUN, lactate, serum creatinine, bilirubin, AST and GGT. 

Following the highest inoculatioin dose (Dose 4) physiologic changes consistent with human SOFA 

diagnostic criteria, as well as SIRS, were observed. Lastly, given that each of these animals had a known 

site of infection (contaminated catheter), all of the animals would meet the human criteria for clinically 

sepsis, with variable severity correlated to the inoculation dose.  

Sham Inoculation (Dose 0): There were no clinical signs of any type of infection observed at any 

timepoint for either of the two control sheep. There was a notable variability in rumen temperatures 

during different parts of the day (eating, circadian rhythm) [54], and specifically after drinking cold 

water (significant changes in temperature at a few timepoints in all sheep were affected by this). Lastly, 

on average the rumen temperatures were ~.8⸰C higher than all of our recorded rectal temperatures. 

However, this is a well documented phenomenon [54].  

Dose #1: 1x103 CFU. Challenge group #1 received their first inoculation dose of ~103 CFU on Day 

0 of experiment. No significant changes in heart rate, respiratory rate, rumen/rectal temperature, 

leukocytosis, or neutrophil counts were observed following initial inoculation (fig. 1a-c,f).  However, 

there was an undulant fever present in all three ewes starting 3 days post inoculation of this dose. This 

is more notable when analyzing the continuously acquired rumen temperature data and was largely 

missed by twice-daily rectal temperatures (Appendix VI). Concurrent with the periods of the pyrexia, 
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we observed intermittent tachycardias, tachypneas, slight increases in serum lactate, mild leukocytosis’ 

at later time points (fig 1a-c, f) and increased total bilirubin (table 2, Appendix VI). 

Dose #2: 1x107 CFU. Challenge group #2 received their first inoculation dose of ~107 CFU on Day 

0 of experiment. We observed significant pyrexias (fig. 2a), tachycardias (fig. 2b), tachypneas (fig. 2c), 

leukocytosis, lymphocytosis, and significant neutrophilias (fig. 2f). The severity of clinical signs slightly 

varied among individual subjects, but for most parameters lasted for 3-4 days post inoculation (fig. 2a-

f). The neutrophilia peaked at one day post-inoculation and increased from a pre-inoculation 

concentration of ~4 x107/ul (+/- 1 x107) to ~10 x107/ul (+/- 2 x107) (fig. 2f, Supplemental VI). Extreme 

thrombocytopenias were observed post challenge Dose #2 in Ewe #3 on day 1 and day 2 of 60 x103/ul 

and 59 x103/ul, respectively (fig 2e). 

Dose #3: 1x108 CFU. Challenge group #1 received their second inoculation dose of ~108 CFU on 

Day 7 of experiment. Immediately following this inoculation, pyrexias (fig. 1a) and tachycardias (fig. 

1c)  were observed. There was only a slight increase in the respiratory rates following this dose challenge 

(fig. 1b). In addition, there were pronounced leukocytosis’,  hyperlactemias (fig. 1d), neutrophilias, (fig. 

1f) and thrombocytopenia (fig. 1e) observed during the few days post inoculation through the termination 

of the experiment.  

Dose #4: High Dose inoculation 1x109 CFU. Challenge group #2 received their second inoculation 

dose of ~109 CFU on day 12 of the experiment. Clinical presentations were similar to dose #2 that they 

received 12 days earlier; however, they were more intense and manifested several additional physiologic 

changes consistent with more severe host immune response to the systemic infection. Observed were 

acute pyrexias (fig. 2a), tachycardias (fig. 2b), tachypneas (fig. 2c), leukocytosis, significant 

neutrophilias (fig. 2f) and extreme thrombocytopenias (fig. 2e). These thrombocytopenias are observed 

in ewe #4 having values of 20 x103/ul, 27 x103/ul, 36 x103/ul on days 13-15, respectively. In addition, 
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the high dose intensive monitoring (fig. 3a-d) displays these physiological changes in more clarity and 

demonstrates the hyperlactemias observed (fig. 2d, 3d). Band neutrophils were seen increasingly from 

day 13 through 15 until euthanasia in Ewe #4 (.0726, .2512, .3699 x103/ul, respectively). Further 

indication of sepsis, or sepsis induced organ injury/failure were observed including increased BUN from 

a baseline of ~11mg/dl on day #12 to 16, 31 and 22 mg/dl in ewes 3-5 on day #13, respectively. Serum 

Creatinine (SCr) increased from an average baseline of ~0.9 mg/dl in all groups (N=8), to ~1.25 mg/dl 

(N=3). Increased bilirubin in ewe #4 was seen from an average of ~.6mg/dl before dose #4, to 1.17mg/dl, 

.75mg/dl on days 13 and 14, respectively. Additionally, there were significant changes in MPV, 

monocytes, AST, fibrinogen, PT, PTT, D-Dimer that were observed with varying intensities and 

durations (Supplemental I, Appendix VI). 

Qualitative/Quantitative Blood and Fecal Cultures. On Days -1 and 0 (pre-inoculation), all cultures 

for K. pneumoniae in blood and fecal samples from sheep were negative. The daily blood and fecal 

samples from days 0 through day 7 (post-inoculation #1, Doses #1 & 2) were tested for 43816RifR isolate 

in all control and challenge ewes. However, there was no bacteria recovered for any of the samples 

during this time period. Following the change to a higher inoculation volume and the addition of an 

enrichment step, all ewes had at least one blood sample positive for the 43816RifR isolate following their 

second challenge dose. Blood and fecal cultures from challenge group #2 on days 13-15 had positive 

cultures for the 43816RifR isolate. Culture of the intravascular tip of the PICC catheter collected at 

necropsy confirmed that all but one challenge inoculated catheters were culture positive for the 

inoculated K. pneumoniae. Liver, blood, and spleen samples collected during necropsy yielded no 

growth of K. pneumoniae in all eight sheep.  Lung swabs collected at the site of gross lung lesions for 

two ewes (Challenge group #2) were positive for the inoculated K. pneumonia strain. Only one ewe had 
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a positive culture of intestinal content (~2000 CFU) at necropsy. The control group sheep remained 

culture negative for the K. pneumonia 43816RifR isolate throughout the study. 

Gross Histology/Histopathology. No remarkable gross or histopathologic lesions were observed in 

any thoracic or abdominal viscera of the control group. In contrast, all animals in both challenge groups 

demonstrated varying degrees of multifocal to coalescing gross lung lesions ranging in size from 0.1-4.5 

cm in diameter (fig. 4a). Histopathologic evaluation of these lung lesions revealed a consistent fibrinous 

and seroproteinaceous pneumonia, progressing in more severe cases to a marked multifocal suppurative 

inflammation with an associated segmental vasculitis and fibrin thrombi (fig 4a). Ewes 3, 7 and 8 had 

serofibrinous lesions with neutrophils in lung suggestive of acute inflammation. Ewe #8 had a significant 

vessel with a thrombus and fibrinosuppurative vasculitis. In addition, a single animal demonstrated a 

moderate lymphocytic periportal hepatitis (Supplemental I). All three ewes in challenge group #1 (Dose 

#1, and Dose #3) had a subjective splenomegaly. The multifocal pathology in the lung was found 

predominantly in the middle and caudal ventral lung fields (lesions were not typical of sheep pneumonia 

and instead were consistent with septic bacterial emboli lung (fig. 4b) and were markedly different from 

the controls.  As expected, animals receiving the highest bacterial doses of 107 CFU (Dose #2) and 109 

CFU (Dose #4) had the most significant lesions at necropsy (figs. 4a-b). These findings suggest a well-

established systemic infection in all challenged ewes.  

 

Discussion: 

In this study, the observed host immune responses to Klebsiella pneumoniae induced catheter 

associated sepsis in sheep demonstrate clinically relevant and translational similarities to that of humans. 

The onset of clinical symptoms includes dose-dependent changes in respiratory, cardiovascular, 

hematological, coagulation and metabolic profiles. The pathophysiologic changes are characteristic of 
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the well-documented symptoms of sepsis, septic shock, sepsis-induced acute organ injury and sepsis 

induced DIC seen in humans [1-3, 55-63]. The novel inoculation method described in this study utilizes  

monomicrobial bacteria intraluminally seeding of the catheter to better replicate the mechanism of 

infection, etiology and pathobiology of CAS in humans. As the most common etiology of infection in 

catheterization is biofilm formation. The results of this study demonstrate that this ovine model of CAS 

offers a highly reproducible, reliable and clinically relevant research platform to further study sepsis and 

to test novel treatment approaches of clinically ill patients. Importantly, the model successfully induced 

the clinical criteria of sepsis in humans, by using both old and new definitions of sepsis (Table 2)[1-3]. 

Sepsis is currently the most expensive disease process treated in U.S. hospitals and its incidence is 

steadily increasing each year [64-67]. Additionally, severe sepsis affects more than one million 

Americans annually [41, 68], an estimated 28 to 57 percent of which die as a result [10, 69-71]. Catheter-

Associated bloodstream infections (CABSI) and subsequent Septicemias (CAS) are systemic infections 

that often involve a pathogen forming a biofilm within the catheter hub where it serves to seed a long-

term infection. Additionally, CABSIs are associated with the emergence of several antibiotic resistant 

pathogens that are nearly impossible to treat and have an additional increase in mortality rates of up to 

57% (71-73, 78-85, 99).  

Presentation of sepsis, and septic shock using both old Sepsis-1 and Sepsis-2 definitions (including 

SIRS symptoms) and the newest Sepsis-3 definitions including SOFA criteria (without SIRS symptoms) 

were observed and evaluated in this ovine model of CAS (table 2) [1-3]. The SIRS cardiovascular criteria 

include pyrexias, tachypenias, tachycardias, leukocytosis and were observed in a dose dependent manner 

with varying duration and severity [2]. Using only these cardiovascular symptoms, each challenged ewe 

met the criteria of SIRS with at least 2/3 criteria being met (pyrexia, tachpnea) [1-2] (table 2, fig 3a-c). 

These acute temperature spikes were observed in rectal temperatures and were confirmed in the rumen 
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temperature data (table 2, Appedix VI). These are especially evident during the high intensity monitoring 

of high dose (fig. 3a-d). Since there is a documented infection involved (bacterial contamination of the 

catheter), they are considered to be experiencing clinical sepsis (table 2). SIRS remained evident in each 

of the challenged ewes throughout the study. The newer SOFA based criteria of sepsis that deemphasizes 

SIRS was also satisfied by documenting changes of the following clinical symptoms, respiratory 

(tachypeneas), coagulation (thrombocytosis’), liver dysfunction (increased serum bilirubin), renal 

dysfunction (increased serum creatinine) and serum lactic acidosis (table 1-2, figs. 1-3) [3]. 

Consequently, the changes observed fulfilled the requirements for sepsis by several different definitions. 

Furthermore, since these clinical symptoms developed immedietly following the intentional induction 

of K. pneumonia in the catheter lumens, and none of the control sheep developed similar syptoms, we 

are confident that these symptoms were not from a secondary source (such as pre-existing ailments). In 

addition, several sheep displayed early signs of sepsis induced acute organ injury following the highest 

inoculation dose #4, which manifested as increased hyperlactemia, increased serum creatinine, increased 

AST, increased BUN, increased bilirubin, thrombocytopenias, tachypneas and tachycardias (tables 1-2, 

figs. 2-3),.  

Signs of disseminating intravascular coagulation (DIC). Further evidence of organ dysfunction 

includes the observed alterations in coagulation profiles, including disseminated intravascular 

coagulation (DIC), in a subset of animals with increased PT, aPTT and D-Dimer [72-75] (table 1). A 

rather diverse onset of clinical coagulopathies characterized by an increased fibrinogen levels, elevated 

D-Dimers, thrombocytopneas, prolonged activated partial thromboplastin time (PTT) and prothrombin 

times (PT) (table 1) were observed. These variable, yet dose dependent coagulation profiles observed 

are expected with these genetically diverse sheep with likely subclinical comorbidities, and previous 

exposure to LPS or other immunogenic factors. However, a pronounced overt DIC was in fact observed 
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in three separate sheep at two different time points, and likely serves as a catalyst in the initial stages of 

sepsis pathophysiology [49, 58, 73, 76-78]. Two sheep from challenge group #2 displayed extreme 

thrombocytopenias post challenge (Dose #2, inoculation #1) Ewe #3 (day 1 and day 2 of 60 x103/ul and 

59 x103/ul, respectively) and post challenge (Dose #4, inoculation #2) Ewe #4 (days 13-15 with 20 

x103/ul, 27 x103/ul, 36 x103/ul, respectively) (table 2, Appendix VI).  

Sepsis-induced tissue hypoperfusion. Tissues and organs receiving inadequate oxygen and nutrients, 

often resulting in injury during the early phases of sepsis. Several physiologic responses consistent of 

this syndrome are seen in challenge group #2 (primarily after high dose #4) including, tachycardia (fig. 

3b) and increased lactate levels (fig. 3d). These sepsis-induced tachycardias are likely due, in part to an 

increased capillary leakage, decreasing the venous return to the heart and cytokines released contribute 

to myocardial depression. Tachycardias lasting >1-day post dose #4 inoculation increased from an 

average baseline of ~85 BPM in all samples to ~120 BPM (fig. 2d, 3d). Elevated lactate concentrations 

were evident post high dose inoculations, with a 4-fold increase from a baseline of ~.6mMol to ~2.4 

mMol following dose #4 (1x109 CFU) on day 13 (fig. 2d, 3d). As suggested in the 2012 surviving sepsis 

campaign, increased lactate levels are a marker for tissue hypoperfusion ([10, 79-81]. Sepsis induced 

hyperlactemias are common in early tissue damage due to the aberrant oxygen flow to tissues and organ 

systems resulting in anaerobic respiration. Evidence of regional hypoperfusion is observed in several 

organ systems of the body including, renal dysfunction/injury manifest by increased blood urine nitrogen 

(BUN) and increased levels of serum creatinine (SCr) [79, 80, 82-86]. SCr increased from an average 

baseline of ~0.9 mg/dl in all groups (N=8), to ~1.25 mg/dl (N=3) following dose #4 (1x109 CFU) in 

challenge group #2 (table 2, Appendix VI). The increase in serum creatinine of +0.35 mg/dl  in less than 

24 hours post high dose challenge is a strong indicator of acute kidney injury (AKI) due to sepsis [84, 

87]. According to the RIFLE (Risk, Injury, Failure, Loss and End Stage in relation to kidney function) 
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classification system, an increase in serum creatinine levels if ≥.3 mg/dl from baseline levels within the 

first 24 hours of suspected sepsis is indicative of kidney injury/dysfunction and is a primary indicator in 

the prognosis of AKI [86, 88]. It is well documented that an elevated level of SCr is a strong indicator 

of AKI and linked to severe sepsis and septic shock [89]. Furthermore, in a cohort study by 

Vanmassenhove et al [90], the argument was advanced of using serum creatinine as an independent 

predictor of mortality, rather than a bystander in cases of sepsis induced AKI. Blood urea nitrogen 

(BUN), a SOFA criteria also showed a significant increase from an average baseline of ~13mg/dl to 

~22mg/dl one day post dose #4 inoculation in group #2 (table #2).  

Although, there were consistent trends observed as a function of the dose administered, the severity 

and duration of symptoms varied slightly between each ewe within a challenge group. This is an expected 

observation considering these sheep are outbred and genetically diverse. Similar to a diverse population 

of humans, the sheep displayed individual differences in host immune responses to the infection. This is 

an important point when considering that many murine models utilize inbred populations of mice, which 

sometimes fail to replicate the individual variation observed in human disease.  

Animal models, which closely reproduce the human condition, serve a vital role in the efficient 

development of preventative, diagnostic, and therapeutic strategies in various types of disease in humans. 

Currently, two murine models of sepsis are most commonly used in laboratory settings: the cecal ligation 

and puncture (CLP) model and the colon ascendens stent peritonitis (CASP) model [16, 53, 91]. They 

are currently considered the most credible animal models of sepsis, with CLP considered the gold 

standard for sepsis research, according to Lilley, et al.[53]. In the CLP model, the cecum of the mouse 

is ligated and then perforated using a needle allowing bacteria in the cecum to migrate into the abdomen 

and establishing a mixed polymicrobial bacterial peritonitis that progresses to sepsis[53, 91] While the 

CASP model relies on placement of a stent in the antimesenteric side of the colon which allows for 
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continual passage of fecal material into the peritoneum, again resulting in a polymicrobial peritonitis. 

Although widely used and comparatively inexpensive, these mouse models have several significant 

shortcomings.  

First, they require general anesthesia and surgery, which have documented impacts on the host 

immune response and subsequent development of sepsis [16]. Second, while these models may replicate 

post-operative sepsis, they fail to replicate the most clinically relevant routes of exposure for emerging 

causes of sepsis, associated with the placement of indwelling central venous catheters, urinary catheters 

and mechanical ventilators. Third, these mouse models do not lend themselves to the standard medical 

interventions routinely utilized in human sepsis therapy, including IV therapies (drug, fluid replacement) 

and the frequent large volume blood collection for monitoring clinical parameters or allow testing of 

novel therapeutics. Fourth, the progression of the septic process in the mice often occurs more rapidly 

than in humans, with the mouse model often culminating in death after 3 days[16], while in humans a 

longer period of 2-3 weeks is commonly observed [8].  Fifth, unlike mice, which are several 1000-fold 

less sensitive to LPS than humans, sheep show similar sensitivities to LPS as humans [33]. Sixth, at a 

gene expression level, acute systemic inflammatory responses in mice appear to be quite different from 

that of humans [16, 21, 23, 53, 92]. And finally, even though sepsis in humans is, by and large, a disease 

that occurs at the extremes of age [4, 18-21] and the short lifespan and rapid maturation of mice limits 

the ability to study the role of age in the murine models.  

Collectively, these issues coupled with the concerns over how well the mouse immune system mimics 

the human disease process suggests a critical need for the development of new animal models of sepsis. 

In particular there is significant need for a model that more closely mimics the human development of 

CAS originating as a monomicrobial infection of nosocomial origins. To address this issue, several 

models have been developed that directly inject monocultures of bacteria into the vascular system, 
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however these models also have significant shortcomings. As outlined in a review by Deitch (36), “The 

problems inherent with current sepsis models created through intravenous bacteria infusion are as 

follows: a) they do not correlate with clinical disease; b) they typically produce a hypodynamic 

circulatory response; c) survival time is generally short and therefore there is limited time for progression 

of disease; d) the serum cytokine response is transient and much greater in magnitude than that observed 

in septic patients; and e) antisepsis agents shown to be effective in these types of animal models have 

not been effective when tested in clinical trials.” In this manuscript we provide proof-of-concept 

evidence that these deficiencies can be overcome by utilizing a novel induction method that relies on 

seeding of a blood clot in a PICC without direct injection of bacteria into the bloodstream.  This approach 

allows for gradual and continual low level shedding of bacteria into the bloodstream, more closely 

mimicking CAS and resulting in a more prolonged event. 

Despite demonstrating physiologic evidence of sepsis, many of the blood samples collected remained 

culture negative, especially at the lower doses. Only animals in the higher dose groups (doses #3 and #4) 

were found to be blood culture positive following inoculation. In our initial efforts with the lower doses, 

we were only performing low volume (0.1 mL) direct culture of the blood, a technique that has low 

sensitivity. In human medicine it is routine to preform multiple large volume blood cultures over the 

course of a 24 hour period in order to demonstrate bacteremias. It is possible that by using the higher 

volume enrichment protocol adopted following dose 3 and 4 we would likely have been able to 

demonstrate blood culture positive results. This situation is consistent with that observed in human 

medicine, where according to current studies more than 50% of severe sepsis cases are culture 

negative[93, 94].  

Several additional benefits of the sheep model for future sepsis research were demonstrated in our 

results. First, we demonstrated the ability to maintain a double lumen central venous catheter throughout 
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the study allowing for the potential for concurrent administration of IV antibiotic infusions, fluid 

resuscitation, cardiotropic drugs or other therapeutic interventions.  These types of interventions are 

often difficult in the murine and porcine models since these species often require sedation or anesthesia 

when administering continuous rate IV infusions.  Second, the ability to easily collect frequent blood 

and urine samples allows concurrent pharmacokinetic monitoring during sepsis in order to evaluate the 

role that sepsis plays in altering pharmacokinetics and pharmacodynamics. 

Under recommendations of a recent report focused on balancing science with animal welfare, we 

elected to use only eight sheep, in order to minimize animal usage for our proof-of-concept model 

demonstration (3Rs) [53, 91]. The premise of this report advocates that new animal models of sepsis be 

developed using a minimal animal numbers in a proof of concept manner. The limited number of test 

subjects made statistical analysis unsuitable, however the consistency of the data provides compelling 

information regarding the benefit of the model in future studies. The dose-dependent response also 

provides a good starting point for decision making regarding the inoculation dose necessary to induce 

varying degrees of disease severity. We considered utilizing four independent groups of animals to 

evaluate the dose-dependency, however elected to reduce animal usage by using a second higher dose 

inoculation in each group of the animals.  While this does complicate some of the interpretation of the 

data, it still provides a strong foundation for future research design concerning appropriate dose and the 

expected variability between individuals. Therefore, the data presented here provides critical information 

for future power studies in similar studies.  

 There are several potential drawbacks to the approach we utilized in this study or to the use of sheep 

for sepsis research in general. First, the limited number of test subjects made statistical analysis 

unsuitable for interpreting the data, and thus was left out of this report. Future use of the model can easily 

overcome this issue by enrollement of larger numbers of animals based on power studies using the data 
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generated here. Another potential drawback to using sheep is that as a ruminant species the use of oral 

antibiotics has the potential to be significantly impacted, however oral antibiotics are rarely used as first-

line choices in sepsis. In fact, previously published pharmacokinetic studies suggest that the sheep 

correctly modeled the human pharmacokinetics of many parenteral drugs of interest, included the 

carbapenems[28]. Finally, the duration of our study was limited, limiting the expected late onset of late 

phase sepsis and MODS as commonly seen in chronically catheterized human sepsis patients. Although 

we attempted to utilize oscillometric non-invasive blood pressure measurement as part of this study it 

was determined to be unreliable and inconsistent when applied to animals that were standing and 

occasionally moving. However, there are commercially available implantable telemetric invasive blood 

pressure, blood gas, and temperature monitoring systems that have been validated for use in sheep [34]. 

Also, perhaps the most important limitation to the use of ovine models, being the lack of validated 

reagents (including Procalcitonin, CRP, and other biochemical quantitative assays). However, this lack 

of reagents for use in ovine models will be solved, especially with the continued sequencing of the ovine 

genome [95], which will allow the rapid PCR of genes necessary for the manufacture of biological tools. 

Going forward. Instead of exhausting more billions of more dollars in funding, precious research 

time and inevitably patient’s lives, the use of a more clinically relevant species of sepsis is crucial to our 

understanding of the disease process. This has been a largely debated topic and remains largely 

unsolved/unaddressed. This novel ovine model of induced CAS can be used in a variety of studies 

regarding human disease pathobiology and be used as a platform to increase treatment efficiency. In 

addition, future studies can be designed to including inoculations of either monomicrobial or 

polymicrobial infections or different types of pathogens (bacterial, fungal, viral), can utilize this in-vivo 

animal model of sepsis. However, preliminary small scale studies needs to be conducted to test sheep’s 

susceptibility to these potential pathogens prior to large number studies [91]. Furthermore, as rational 
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research design can be utilized to induce specific comorbidities in these sheep to test the different 

pathophysiologys in; immunocompromised, diabetic, ketonic, malnourished, genetically diverse, age, 

race and gender to study how they affect the pathophysiology and ways to treat them.  

There are many potential applications to warrant the use of this sheep model of sepsis such as; 

establishing a better understanding of the colonization, adaptation and shedding of carbapenem-resistant 

Enterobacteriaceae (CRE), as well as KPC spread and epidemiology. Additionally, testing new drug 

therapies or optimal drug dosing regimens, studying in-vivo biofilm formation leading to seeding of 

infection and ways to treat and prevent them (49). Likewise, a pre-challenge drug intervention can be 

tested prior to microbial insult to protect certain populations, as well.  

  Conclusion. It’s an undeniable truth that most animal models used in modern research are frequently 

the most convenient model utilized, instead of the best available. However, in order to make clinical 

advancements, the most translatable and reliable animal models ought to be used, and these are often 

non-murine models [4, 18-21, 24]. In sheep, the size, temperament, and ease of catheter (placement and 

maintenance) coupled with aforementioned intrinsic factors shared with humans make them great 

platforms for pre-clinical evaluation and optimization of biomedical and sepsis research.  

This proof of concept study addresses the urgent need for an improved animal model in sepsis 

research. In particular, central catheter associated sepsis which has a complex pathobiology that includes 

biofilm formation and has one of the highest mortality rates in human sepsis. The development of CAS 

depends on several intrinsic and extrinsic factors in both the host and pathogen, characterized by the 

high heterogeneity seen in human and sheep sepsis.  Further, the nonsurgical (no sedation and no general 

anesthesia) model of central catheter placement coupled with seeding catheter lumen with a 

monomicrobial infection and can be housed and tested using both short- and long-term catheter studies. 

Where sheep and can serve as a model for testing novel therapeutic interventions with IV fluids, specific 
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biomarkers, vasopressors and intravenous antibiotics, all of which are not feasible in the most common 

mouse model. Lastly, the routine hemodynamic, immunological, coagulation, biochemical and 

microbiological monitoring of these sheep can provide great insight to sepsis pathophysiology and can 

be analyzed in great detail. Future sheep (or other large animal) research models of CAS is warranted to 

further understand this medical enigma we call sepsis.   

An evolved method of effectively diagnosing and categorizing this multifactorial disease processes 

is essential to the improved prognosis of sepsis. As the complex pathophysiology of sepsis and its 

associated syndromes (acute organ injury or dysfunction) become better understood, it is likely that 

sepsis will no longer be considered generalized syndromes with a broad range of clinical symptoms and 

treatments. Rather, each syndrome would contain various sets of well-defined disease subtypes that can 

be characterized by specific cellular changes, clinical symptomologies and/or accompanied biomarkers. 

Each of which can have therapy regimens developed to optimize their efficacy and improve overall 

sepsis survivability.   
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LIST OF FIGURES 

Figure 1. a-f, Control Group vs. Challenge Group #1: various measurements (physiological, 

hematological, and biochemical) taken throughout study. A. Rumen “Core” (Temperatures,  oC), B. 

Heart Rates (BPM), C. Respiratory Rates (/Minute), D. Serum Lactate Concentration (mM), E. 

Platelets-Auto (x103/ul), F. Neutrophil Counts (x107/ul).  
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*Note: varied sample frequency based on Ewe condition, ability to attain viable samples and 

experimental setup. 

Figure 2. a-f, Control Group vs. Challenge Group #2: various measurements (physiological, 

hematological, and biochemical) taken throughout study. A. Rumen “Core” (Temperatures,  oC), B. 

Heart Rates (BPM), C. Respiratory Rates (/Minute), D. Serum Lactate Concentration (mM), E. 

Platelets-Auto (x103/ul), F. Neutrophil Counts (x107/ul). *Note: varied sample frequency based on 

Ewe condition, ability to attain viable samples and experimental setup. See figure 3 for high resolution 

graphs for intensive monitoring data (shaded area in 3.A- 3.D). 

Figure 3. Intensive monitoring for Challenge Group #2 administered highest inoculation Dose, (Dose 

#4 of ~1x109 CFU). Intensive monitoring of thermoregulation and cardiovascular parameters Control 

Group vs. Challenge Group #2: High Dose intensity monitoring of A. Respiratory Rates (Top-Left), B. Heart 

Rates (Top-Right), C. Rumen Temperatures (Bottom-Left), and D. Serum Lactates (Bottom-Right). 

thermoregulation and cardiovascular recorded every 15 minutes during the first hour post inoculation, 

then once an hour thereafter for 5 hours. Rumen Temperatures were sampled every 30 minutes and 

Serum Lactates every 2 hours post high dose administration for 6 hours.  

Figure 4A. Gross pathology sample from Challenge Group #1:4B. Gross pathology samples of two separate 

lung samples from Challenge Group #2 at necropsy 

 

 

LIST OF TABLES 

Table 1. Ewes in Challenge Group #2; displaying overt DIC Criteria. D-Dimer (ng/ml), PT and PTT 

time (seconds). *Adopted from ISTH algorithm for overt DIC in humans [72, 73, 75, 77, 97, 98]. 1D-

Dimer (ng/ul), 2PT- Prothrombin Time (seconds), 11-13 seconds is the normal range in humans, with 

an international normalized ratio (INR) of: .8-1.1, PT: <3 seconds = 0 points, >3 seconds but 

<6seconds = 1 point, >6 seconds = 2 Points. 3PTT- Partial Thromboplastin Time (Seconds), PTT: 60-

70, 30-40 aPTT (Avg human). Average Platelet Count (x103/ul) Change from Baseline: pre-

inoculation averages of all sheep day -2 through day -1 (n=8, X=16) x ̅= 367 σ= 165. According to the 

International Society of Thrombosis and Homeostasis (ISTH) Platelet count: >100 x 103/ul = 0 pts, 

<100 x103/ul = 1pt, <50x103/ul=2 pts score for DIC in humans [77]. According to this data the mean 

baseline platelet counts for humans and sheep were -Baseline pre-inoculation averages of all sheep day 

-2 through day -1 (n=8, X=16)  𝑥̅= 367 σ=  165. Fibrinogen Concentrations (mg/dl) in all Groups.  To 

calculate DIC in humans a value of >1g/L gives a significant hyperfibrinogen and a score of 1 and a 

value of <1g/L gives a score of 0 according to the International Society of Thrombosis and 

Homeostasis (ISTH) score for DIC in humans [77]. Note: values presented in sheep are in mg/dl (a 

100-fold reduction to the g/L values utilized in human patients. Normal human values of fibrinogen are 

~150-400mg/dl.  
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Table 2. Severity of sheep sepsis based on both old and new human definitions: (SIRS, SOFA). 1. 

Heart rate mean: 75.88, 2σ=7.78, 2. Respiratory rate mean: 27.02, 2σ= 8.06, 3a. Rumen temperature 

mean: 39.567, 2σ=.413, 3b. Rectal temperature mean: 38.76, 2σ=.33, 4. Lactate concentration mean: 

.66, 2σ: .33, 5. White blood cell count mean: 5.86, 2σ: .74, 6. Neutrophil Mean: 3.09, 2σ: .79. 7. 

Creatinine Mean:  0.869, 2σ: 0.1676 (or +30%: 1.13) **Note: Challenge group #1 (Ewe #’s 1 and 2). 

Individual Ewe’s SOFA score throughout study timepoints. 
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Figure 3. Control Group vs. Challenge Group #2: High Dose intensity monitoring of A. Respiratory 

Rates (Top-Left), B. Heart Rates (Top-Right), C. Rumen Temperatures (Bottom-Left), and D. Serum 

Lactates (Bottom-Right).  
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Figure 4A. Gross pathology sample from Challenge Group #1: 

  

4B. Gross pathology samples of two separate lung samples from Challenge Group #2 at necropsy. 
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Table #1. Coagulopathies of Challenge group #2; displaying possible overt DIC [73-75]. 

 

 

 

 

 

 

Coagulopathy 

of Overt DIC: 

Pre-inoculation 

(N=8) 
Day #2 Average 

(N=3) 

Day #13 Average 

(N=3) 

Day #14  

Average (N=3) 

D-Dimer1 𝑥̅ = 868 1002 (↑133.18) 1956 (↑1088) 1584 (↑716) 

PT2 
𝑥̅ = 10.15 

σ = 0.778 
12.03 (↑1.88) 16.73 (↑6.58) 14.27 (↑4.12) 

PTT3  
𝑥̅ = 43.26 

σ = 5.995 
40.1 (↓3.16) 60.7 (↑17.44) 56.27 (↑13.01) 

Platelet4 
𝑥̅ = 367 

σ =165 
↓306 ↓133 ↓121 

Fibrinogen5 𝑥̅= 350  

σ= 141 
633 (↑283) 500 (↑150) 567 (↑217) 



www.manaraa.com

 

 
 

Table 2. Severity of sheep sepsis based on both old and new human definitions (SIRS, SOFA). 

 **See Appendix VI for individual values, averages and inter/intra group comparisons.** 

aSIRS definitions derived from:[1]     bSOFA criteria derived from [3, 99]: and modified for use in Sheep. 

 

 

 

Groups 

SIRSa (≥2 of these symptoms concurrently):       Sepsisa: Severe Sepsisa: SOFAb Scores: 

HR *1: 

>100 

Core Temp. 

Rumen*3: 

>40ºC 

RR*2 

>45 

WBC 

count *5: 

>8.5x103/ul   

Neutrophil 

Count *6: 

>7.5x103/ul 

Total 

# with  

SIRS: 

Known  

bacterial 

infection: 

Total #  

with  

Sepsis: 

Serum*7 

Creatinine: 

>1.13(mg/dl) 

Lactate*4 

>2(mM/L) 

Total #  

with  

Severe 

Sepsis: 

Bilirubin 

≥1.17 mg/dl 

Platelets 

≤100,000/ml 

Control Group    
(N=2): 

Sterile TSB 
0/2     0/2 1/2     0/2    0/2  0/2   0/2 0/2    0/2    0/2  0/2  0, 0, 0 

Challenge 
Group #1 

Dose # 1: 

~103 CFU 
1/3     3/3 2/3     2/3    2/3  3/3   3/3 3/3    0/3    0/3  0/3  1, 0, 0 

Challenge 
Group #2, 

Dose # 2: 
~107 CFU 

2/3     3/3 2/3     3/3    2/3  3/3   3/3 3/3    0/3    0/3  0/3  0, 0-1, 0-1 

Challenge 

Group #1 

Dose # 3: 
~108 CFU 

2/3     3/3 1/3     1/3    1/3  3/3   3/3 3/3    0/3    0/3  0/3  1-2, 1-2, 1 

Challenge 

Group #2 
Dose #4: 

~109 CFU 
3/3     3/3 3/3     3/3    2/3  3/3   3/3 3/3    1/3    2/3  2/3  2-4, ≥5, 1-3  

Heart rate mean: 75.88, 2σ=7.78, 2. Respiratory rate mean: 27.02, 2σ= 8.06, 3a. Rumen temperature mean: 39.567, 2σ=.413, 3b. Rectal temperature mean: 38.76, 2σ=.33,  

4. Lactate concentration mean: .66, 2σ: .33, 5. White blood cell count mean: 5.86, 2σ: .74, 6. Neutrophil Mean: 3.09, 2σ: .79. 7. Creatinine Mean: 0.869, 2σ: 0.1676 (or +30%: 1.13)  

*Note: control group #1 (Ewe #’s 1 and 2) displayed neither SIRS symptoms nor SOFA criteria of sepsis throughout the duration of the study. 
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